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The stability of electrolytic brass deposition in a continuous flow stirred tank electrolyser is studied 
via Liapunov functions based on an empirical model of  the deposition process. 

Nomenclature q 
R 

A, B Quantities defined by Equation 8 
C~ Concentration of copper: C*, t 

steady state; Cl~, inlet concen- T 
tration. Vr 

C2 Concentration of zinc: C*, steady W~, W2, W3 
state; C2i, inlet concentration 

F Faraday's constant x 
fcN Free cyanide content x~ 
g(x, t) Perturbation vector 
i Cathode current density x2 
/j Current carried by the j-th com- y 

ponent (j = 1, copper; j = 2, 
zinc) z 

ml, m2 Maximum magnitude of xl and x2 72 
mt Mass of brass deposited on the e 

cathode t/l, t/z 
M Malkin bound for the partial )~j 

derivatives of the Liapunov func- #l, #2 
tion 

Ml Molar mass of copper ~k 
M2 Molar mass of zinc 
P Symmetric positive definite matrix 0 

Inlet flow rate of electrolyte 
Relative amount of copper in the 
bath (%) 
Time 
Reactor temperature 
Reactor volume 
Positive definite functions 
(Malkin's theory) 
State vector 
Dimensionless copper concentra- 
tion 
Dimensionless zinc concentration 
Relative amount of copper in the 
brass deposit 
Valency 
Liapunov parameter 
Bound for the state vector 
Malkin bounds 
Time-decay parameter 
Liapunov parameters (non- 
autonomous system) 
Time-decaying perturbation func- 
tion (vector) 
Dimensionless time 

1. Introduction 

The stability of a CSTER (continuous flow stirred tank electrochemical reactor) with a single 
electrode reaction at each electrode has previously been treated [1, 2] in terms of Liapunov functions; 
the approach is purely algebraic and obviates the necessity of solving interlocked nonlinear differ- 
ential and algebraic equations in order to establish the stability region of a dynamic system. It was 
shown via the specific case of electrolytic copper deposition that the stability region corresponds 
essentially to an electrolyte concentration-temperature domain where electrolyte density and 
conductance can be numerically related to these variables by appropriate statistical regressions. This 
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basic finding is independent of the form of perturbation, be it a sudden change in the interior of the 
reactor or a bounded disturbance in an exterior variable, e.g. the imposed current. 

In exploring the scope of Liapunov analysis, the stability behaviour of a CSTER system where 
two alloying species are simultaneously discharged at a cathode, was recently investigated [3]. The 
electrolytic production of brass was chosen as a test case due to its familiarity and industrial 
importance as well as the challenges encountered in correlating pertinent process parameters and 
variables by a moderately complex mathematical model. The purpose of this paper is to summarize 
the major findings of the study and to indicate certain practical benefits which may be derived from 
the approach. 

2. Summary of the Liapunov method 

We consider first the free dynamic system (a system without external forcing): 

dx 
- f ( x ,  t) (1) 

dt 

with steady state at x = O. If a scalar function V(x, t) with properties 

V(x, t) > 0; x ~ 0; t >~ 0 (2a) 

V(0, t) = 0; t /> 0 (2b) 

dV ~V dx 
dt (x, t) - c~t + ~ - ' ( g r a d  V(x, t)) < 0; x ~ 0 (2c) 

within a certain region x ~ f~ can be found, then any perturbation in this system occurring within 
region f~ will let the system return eventually to its original steady state; in other words, the system 
is asymptotically stable within ~, and V(x, t) is a Liapunov function. Rigorous treatment and proofs 
of associated theorems are given by numerous authors (e.g. [4-7]). The simplest algebraic expression 
for a Liapunov function is the quadratic form V(x, t) = xVP(t)x where P is a positive definite 
symmetric matrix; for autonomous nonlinear systems the Liapunov function V(x) = f T P f i n t r o -  
duced by Krasovskii [8] has particularly been noted for its relative simplicity. For time-varying 
perturbations, Berger [9] introduced the Liapunov function 

V(x, t) = x ' Q x +  f70'(O)Sq*(O)dO (:3) 

based on the approach of Mangasarian [10], where Q and S are positive definite symmetric matrices 
and 0(t) is the set of time-varying perturbations. In the case of persistent perturbations (including 
external disturbances), stability may be interpreted in terms of Malkin's theorem [11] in the 
following manner. The dynamic system 

dx 
d t  = f (x ,  t) + g(x, t) (4) 

is stable within a certain region, i.e. 1[ x(t)[J < e if the set of conditions below is satisfied. 
(i) The free dynamic subsystem dx/d t  = f (x ,  t) is asymptotically stable within a specific region, 

and V(x, t) is its Liapunov function. 
(ii) There exist three positive definite functions, Wl(X), W2(x) and W3(x), such that 

W~(x) < V(x, t) < ~ ( x )  

and 
dV 
d~- < - W~(x) 
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(iii) The partial derivatives (0 V / d x j ; j  = 1 . . . n) of V(x,  t) are bounded by a positive scalar M. 
(iv) For any bounded scalar e > 0, Ilx(0)ll < q~(e); ql > 0 and Ilg(x, t)ll < r/z(e); ~/2 > 0 

An elegant proof of Malkin's theorem was given in [4]. It is to be emphasized that Liapunov 
functions are not unique and, more importantly, it is entirely sufficient to find one Liapunov 
function only to prove stability. However, different Liapunov functions may predict different 
stability regions and 'maximization' of the stability region implies a systematic search for an 
'optimal' Liapunov function. This otherwise intriguing aspect of the theory is well beyond the scope 
of the current paper. 

3. Modelling of the electrolytic brass process 

Brass, the first and one of the most widely used alloy-plating processes to be produced by elec- 
trodeposition, is plated from cyanide solutions at low current densities (about 0.5 A dm 2) for 
decorative purposes. While several texts discuss brass-plating process technology in detail (e.g. 
[12-16]) there have been relatively few in-depth investigations of the inter-relationship between 
various process parameters and deposit quality [17-23] which would allow a full description of the 
plating process via a mathematical model. An effort to combine all pertinent experimental data into 
one comprehensive model [3] has not been successful and it appears that specific process models 
developed on the basis of individual literature references offer the best opportunity to proceed: in 
this paper the model based essentially on Field's data [18] is employed for the analysis of stability. 
The most important process parameters are the copper to zinc ratio in the electrolyte, current 
density, free cyanide content, ammonia content, temperature, pH and the total metal content, 
although not every parameter can be related in an acceptable quantitative manner to deposit quality. 
Similarly, colour and current efficiency are difficult to account for numerically, these factors placing 
a certain constraint on the applicability of mathematical models. The data obtained by Field were 
correlated via the multidimensional regression 

y = bo + b~, T + bz1R q- b3~fcN + b32f~N q- b33fc3N q- b41i q- b43i 3 -[- bs~/fcN (5) 

with parameter values given in Table 1 and statistical information in Table 2; the ratio of the sum 
of squares of the regression to the total sum of squares is reasonably close to the ideal value of unity 
(i.e. when all data variations are accounted for by the model). Although the data are based on 
steady-state experimental conditions, it may be assumed with reasonable certainty that the relative 
copper content of the deposit is independent of the duration of electrolysis, since according to 
Ferguson and Sturdevant [20] the relative copper content varied by only 4% in the first 50 h of an 
88-h electrolysis. Thus, Equation 5 may be used as a component of  a dynamic mass balance equation 

Table 1. Multivariable regression on data obtained by Field 
[18]: parameter values 

Regression Value Standard 
parameter error 

b 0 26.3766 13.8529 
b .  0.2578 0.1698 
b21 1.4952 0.1199 
b31 - 6.4202 2.5151 
b32 0.4342 0.1878 
b33 0.0077 0.0035 
b41 - 21.0938 3.5180 
b43 0.9309 0.3109 
bs~ 0.4139 0.1126 
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Table 2. Multivariable regression on data obtained by Field [18]." statistical information 

Source Degrees of Sum of Mean A/B 
freedom squares square 

Model 8 10580.199 (A) 1322.63 0.8713 
Error 37 1562.728 42.24 

Total 45 12142.927 (B) 

for describing a continuous brass deposition process in a well-stirred flow reactor consisting of a 
single-compartment cell with a pair of  parallel plate (steel) electrodes. The operating conditions are 
summarized in Table 3. 

The mass balance equation in unsteady state may be formally written as 

dCj  /j 
Vr d t  = q(Cj , i  - C j )  Z j F  G; j = 1, 2 (6) 

where the function G represents the overall effect of  the plating parameters. In terms of the 
dimensionless concentration perturbation variables, xj  = (Cj  - Cj*) /Cj , i ;  j = 1, 2 and dimension- 
less time 0 = q t / V , ,  the dynamic state equations 

dx~ 
= - x l  - A = f l ( X l ,  X2) ( 7 a )  

dO 

dx2 _ 
dO x2 + B = f2(x~, x2) (7b) 

are obtained, where 

A - m t ( y  _ y , )  ( 8 a )  

qCl,i tMo 

Table 3. Operating variables and conditions of the brass 
deposition process 

Reactor 
Dimensions: 0.7 x 0.7 x 0.7m 
Active volume: V~ = 0.343m 3 

Electrodes 
Active area: A e = 0.4624m z 
Thickness: d = 0.002m 
Separation distance: s = 0.68 m 

Operating conditions at steady state 
Inflow rate: q = 10-6m3s -1 
Current density: i = 0 .5Adm 2 
Inlet copper concentration: C~,~ = 0.4865kgm -3 
Inlet zinc concentration Cz, t = 0.3532 kg m -3 
Effluent copper concentration: C~ = 0.3463 k g m  -3 
Effluent zinc concentration: C~ = 0.3059 kgm -3 
Free cyanide content: fc• = 9.0 kgm -3 
Percentage copper in deposit: y = 74.2% 

Dominant ionic species in electrolyte: Cu(CN)~- and 
Zn(CN)~ - 
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and 

B = m t (y  _ y , )  (8b) 
qCa,i t m2 

and the perturbation variable (y  - y*) is related to the state variables x~ and x2 by 

( 30.91xt + 22,0 ) 
y - y* = 1.494581 \~30.91g u ~3.09~ 7- 42.0 - 0.5238 

It is instructive to note that the brass deposition model is represented in a 'modular' form by 
Equation 8, where the functional form of the ( y - y*) term is determined by the specific deposition 
model used. (ln [3] five independent models for electrolytic brass deposition are presented.) The 
variables x~ and x2 are the state variables of the process. 

4. Liapunov analysis of the brass deposition process 

4.1. Perturbation in the state variables 

For the sake of illustrating Liapunov's stability method, two 'candidate' functions will be con- 
sidered. The first one employs a positive definite matrix in its quadratic form, and the second is based 
on Krasovskii's theorem ([6]; see also Appendix 1). In the first instance 

V(x,;x2) = x 2 + y2xZ2 (9) 

where 7 2 is an a priori indeterminate scalar. Although V(x) is positive-definite for all values of xl 
and x2, and it is zero when x~ = xa = 0, the negative definiteness of its time derivative 

1 dV 
= - x ~  - 72x22 - Ax I + 72Bx2 (10) 

2 d0" 

cannot be ascertained by inspection. A systematic evaluation of the derivative [3] indicates that its 
negative definiteness is guaranteed if 0.001 < 72 < 10. The numerical value of 72 is immaterial, it 
only alters the shape of the V(x) contours enclosing the regression domain. (Stability analysis 
outside the regression domain is indeterminate, since a mathematical model of the brass deposition 
process is constrained to the validity range of the regression.) Consequently, Equation 9 shows that 
no perturbation in x~ and/or x2 originating inside the regression domain will cause instability; the 
perturbed process will return to its set steady state. 

The analysis based on Krasovskii's theorem yields the quadratic form 

= x 2 + 72x22 + A 2 + 72B 2 -- 2Ax~ -- 272Bx2 (11) 

which has to be positive-definite. In order for its time-derivative to be negative-definite, the 
inequalities 

OA 
l + ~ x  > 0  

( O A ) ( I -  O B ) ( O A _  720B~2 
472 1 + Ox~/ \  ~ -- ~ Ox,J > 0 (12) 

have to be satisfied (see Appendix). In terms of numerical values pertaining to the model, the 
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I~176 coo*oo, of vczl: 0..987 

x f 000i  
-0.50 

- 1 , 0 0 ~  

-0.5 0.0 0.5 1.0 

Xl 

Fig. 1. I l lustration of  Krasovski i ' s  method (x~ = dimension- 
less copper  concentrat ion;  x 2 = dimensionless zinc con- 
centrat ion in electrolyte). 

conditions of  asymptotic stability are 

and 

where 

and 

D > -0 .0557  (13a) 

472(1 + 17.94D)(! + 17.94E) - (13.04E + 24.0272D) 2 > 0 

D = 
23.09x2 + 20.0 

(30.91Xl + 23.09x 2 + 42.0) 2 

(t3b) 

4.2. Perturbations due to time-decaying external and parameter forcing 

A typical case of external forcing is shown by variations in inlet composition, represented by the 
dimensionless variables 

j,l. /]/j Cj,i C -~ 
C~ ' j = 1, 2 (15) 

.],1 

30.91x~ + 22.0 
E = 

(30.91xl + 23.09x2 + 42.0) 2 

Since both D and E are positive within the regression domain, the first inequality is immediately 
satisfied. The second inequality, rewritten as 

f(7) = 72 (1 + t7.94D)(1 + 17.94E) t 
(13.04E + 24.0272D) 2 > ~ (14) 

can be satisfied within the regression domain, where 0.0068 < D < 0.0340 and 0.0044 < E < 
0.0167, only for a certain set of values of  72. The choice of  72 = 1 provides a Liapunov contour that 
encloses the regression domain without traversing the boundary defined by f(7) = 1/4, as shown in 
Fig. 1. Hence, Krasovskii's method also indicates asymptotic stability within the regression region. 
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If such variations are time-decaying in the exponential sense, i.e. 

I~j(t)l < ~,0 -xjt e ; j = 1, 2 (16) 

where ~k ~ is the magnitude of ~bj at zero time, the analysis of stability follows closely Mangasarian's 
approach [10] modified by Berger [9]. An appropriate Liapunov function 

V(x, O) = x~ -t- ~2x2 + fo [2#1~/2(0) + 2/~20~(0)1d0 (17) 

with its time derivative 

l d V  
= - x ~  - 72x~ - # ,0~  - I1202 - A x ,  + 72Bx2 + yziP2x 2 (18) 

2 dO 

carries a priori indeterminate positive parameters #~ and/12 in addition to the familiar 72 parameter. 
If kq and/~2 are chosen to be sufficiently large, d V/dt  will always be negative, and at large times when 
Oj ~ 0, the conditions of 4.1. are regained. Since the numerical values of #,and #2 are immaterial, 
asymptotic stability within the regression domain follows directly in the case of external forcing of 
this kind, including simultaneous initial perturbations in the electrolytic bath concentrations. In the 
case of parameter perturbations the state equations may be rewritten as 

dxl 
dO - x l  - A(O) (19a) 

and 
dx2 

= - x 2  + B(O) (19b) 
dO 

where A(O) and B(O) are explicit functions of time incorporating all parameter-forcing effects. 
Equation 9 is a valid Liapunov function with time derivative 

1 dV 
- x~ - 72x~ + 72B(O)x2 - A(O)Xl (20) 

2 dO 

and asymptotic stability can again be ascertained provided that the forcing functions do not exceed 
the range limitations of the parameters in the regression model. 

4.3. Persis tent  per turbat ions  in ex ternal  fo rc ing  

When external forcing is persistent but bounded, stability in the Malkin sense can only be con- 
sidered, as shown in Section 2; asymptotic stability loses its sense since a continuously perturbed 
system cannot reach a steady set of state variables. A typical illustration of this kind of forcing is 
bounded perturbations in the electrolytic current (or potential drop between oppositely charged 
electrodes). For the free dynamic subsystem excluding the current-carrying vector term g(x ,  t) in 
Equation 4 

dx~ 
dO - xl (21a) 

and 
dx2 
dO 

x2 (21b) 

a valid Liapunov function is given once again by Equation 9 with negative-definite time derivative 

1 dV 
- x ~  - 7 2 x ~  

2 dO 
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Further, Wl(x) = 0; W2(x) = m~ + 72m~; Ixll ~ ml; ix21 ~ m2; W3(x) = x~ + 72x~are permiss - 
ible (as well as logical) choices. The bound of the c~V/~xj partial derivatives may be taken as 
M = 2(rn~ + 74m~) ~/2, and the bound t h is completely arbitrary as long as t h is positive. The bound 
for the perturbation vector g(x, t) must satisfy the condition 

,2  > ( I - A ( 0 ) ]  2 + B2(0))  ';2 

,which implies again an arbitrarily large positive scalar. Finally, an obvious choice for the state-vari- 
able bound is e = (m~ + m~)l/2; hence, all conditions of  Malkin's theorem being satisfied, Malkin 
stability has been proven. 

5. Comparison of the Liapunov stability analysis with electrolyser response to perturbations 

In order to illustrate the validity of  the foregoing stability analysis, transient responses of the brass 
deposition process obtained via digital computer simulation are compared with the former. Fig. 2 
portrays the return to steady state of  the process perturbed by five sets of  sudden change in 
electrolyte composition within the regression domain where the indicated stable behaviour is 
predicted by Equations 9 and 10. Stability in the case of  time-decaying perturbations is illustrated 
in Fig. 3, and Fig. 4 depicts a typical transient response to a sinusoidal perturbation in current of  
the form 

i = 7 + Aisin(co0) (22) 

In Table 4 representative values of  the Malkin stability parameters are assembled. These par- 
ameters were obtained from corresponding transient responses similar to those given in Fig. 4. 

6. Conclusions 

It has been demonstrated in this paper that stability analysis based on appropriately chosen 
Liapunov functions is a fast and relatively straightforward means of  studying the stability of  
simultaneous metal deposition via electrolysis: there is no need to solve the governing state equa- 
tions for each set of  process perturbations. However, the success of the approach depends strongly 

0 , 4  -- 

0.2-  

X z 
O.C- 

-0.4 

-0.2 

-0.6 

Regression Dornain~ 

I I 1 I I I 
-0.4 -0.2 0.0 0.2 0.4 0.6 

Xi 

Fig. 2. Transient response to five sets of sudden perturbation 
in the electrolyte composition (coordinates defined in cap- 
tion of Fig. I). 
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Table 4. Malkin stability parameters from transient responses to periodic forcing in current (Equation 22) 

~o, h i xl x2 ml  m2 M q2(e) e 

Min Max Min Max 

1.0 - 0 . 1 3  0.39 - 0 . 1 4  0.17 0.39 0.17 0.94 10.79 0.42 

0.5 - 0.16 0.44 - 0.22 0.21 0.44 0.22 1.13 10.83 0.49 

0. I - 0.40 0.69 - 0.64 0.52 0.69 0.64 2.47 11.01 0.94 

i = 0 . 5 A d m  2; Ai = 0 . 2 5 A d m  2. 
= 1.232 (a rb i t ra ry  choice). 

on the availability of electrochemical and physical data and their quantitative dependence on 
dominant process variables. The present scarcity of such information poses a serious limitation on 
the scope of this powerful technique and underlines the importance of extending the available data 
base for electrochemical systems. 

The existence of stability, while important for process control considerations, is not a guarantor 
of acceptable overall performance, since undesirable cathode quality can be temporarily produced 
during (large) transient response periods. In the specific case of brass deposition, for example, 
deposit colour and composition may be adversely affected, at least over short periods of time, and 
the suppression of large perturbations would be an overriding control objective regardless of 
inherent long-term stability. While an integral part of rational process design, stability analysis does 
not obviate other considerations and it has to be employed in a proper perspective. 
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Fig. 4. Transient response to sinusoidal forcing in current 
density i = 0.5Adrn-2; Ai = 0.25Adm z; c9 = lh -~ 
(coordinates defined in caption of Fig. l). 

A p p e n d i x  

Construction of  a Liapunov function by Krasovskii's method [6] 

For  the system represented by the state vector  differential equa t ion  

dx 
dt  f (x) ;  f(O) = 0 (A.1) 

the quadra t ic  form 
V(x) = f r p f  ( A 2 )  

is a L iapunov  function; the posit ive definite mat r ix  P is a priori  indeterminate.  Different iat ion o f  
Equa t ion  A.2 yields 

dV 
d---[ = f T ( p j  + jT p ) f  = _ f T Q f  (A, 3) 

where  J is the Jacob ian  mat r ix  of  the system, i.e. J = {Of/Oxj }, and df/dt = J f  Hence,  for p rov ing  
asympto t ic  stability, the matr ix  Q = - ( P J  + j T p )  must  be posi t ive-def ini te .  Let  Q be a 2 x 2 
square matr ix ,  as in the case o f  interest here, with d iagonal  elements q11, q22. Then,  for  positive 
definiteness the Sylvester inequalities [24] 

qli > 0 (A.4) 

det Q = qllq22 - qJ2q21 > 0 (A.5) 

mus t  be satisfied. The  shor tcoming  of  this simple and  elegant me thod  is its conservat iveness  in 
predict ing the size Of the region where the system is stable, especially if the identity matr ix  is chosen 
for  P as a simplification. If, for  example,  ~ = x 2 and f2 = - 2 X l  - 3x 2, the resulting q~ = 0 
violates Equa t ion  A.4 and the me thod  fails a l though the system is asymptot ica l ly  stable everywhere 
with real negative eigenvalues of  - 1 and - 2 .  
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